
LLNL-TR-670435

Detecting Soft Errors in Stencil
based Computations

V. Sharma, G. Gopalkrishnan, G. Bronevetsky

May 7, 2015

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Detecting Soft Errors in Stencil based Computations
Vishal C. Sharma and Ganesh Gopalakrishnan

School of Computing, University of Utah, USA
Email: {vishal,ganesh}@cs.utah.edu

Greg Bronevetsky
Lawrence Livermore National Laboratory

Email: bronevetsky1@llnl.gov

Abstract—Given the growing emphasis on system resilience,
it is important to develop software-level error detectors that
help trap hardware-level faults with reasonable accuracy while
minimizing false alarms as well as the performance overhead
introduced. We present a technique that approaches this idea
by taking stencil computations as our target, and synthesizing
detectors based on machine learning. In particular, we employ
linear regression to generate computationally inexpensive models
which form the basis for error detection. Our technique has been
incorporated into a new open-source library called SORREL.
In addition to reporting encouraging experimental results, we
demonstrate techniques that help reduce the size of training data.
We also discuss the efficacy of various detectors synthesized, as
well as our future plans.

I. INTRODUCTION

Soft errors (also called single-event-upsets) are one of the
most serious of impediments to the rapid attainment of large-
scale (especially exa-scale) computing capabilities. Such errors
are typically caused by radiation from chip packaging, cosmic
rays [1], [2] or even circuit noise due to low-power operation
[3], [4]. They can introduce silent data corruptions (SDC) into
the computational state [5], [6], and as such are a huge concern
in extreme-scale computing [7], [8].

In this paper, we focus on the synthesis of software-level
error detectors for soft-errors. In a nutshell, these detectors
are nothing but specific assert statements introduced into
the user code, with the expectation that the assertion fail
whenever there is a fault. Naturally, they must also not fail
when there is no fault (“false alarms”), and there must be the
least added computational burden. Such detectors underlie any
system resilience solution—whether it be checkpointing and
restart [7], [9], [10] or more localized containment and repair
methods.

Our specific contributions are toward an almost fully au-
tomated synthesis of soft-error detectors for applications that
perform time-stepped stencil computations, such as in solvers
for finite-difference discretization of ordinary and partial dif-
ferential equations (ODEs and PDEs). We focus on detecting
SDCs caused by transient soft-errors in CPU operations and
registers. We do not consider permanent errors (caused due
to transistor aging [4], [11]). We also do not consider soft-
errors occurring in other memory elements such as DRAM

Supported in part by NSF Award CCF 1255776, SRC Contract 2013-
TJ-2426, and Scientific Discovery through Advanced Computing (SciDAC)
program funded by U.S. Department of Energy, Office of Science, Advanced
Scientific Computing Research (and Basic Energy Sciences/Biological and En-
vironmental Research/High Energy Physics/Fusion Energy Sciences/Nuclear
Physics). See http://super-scidac.org/.

and data caches, as these subsystems are very effectively
protected via error correcting codes (ECC) [12], and other
methods [13], [14], including triple modular redundancy [15].
While we evaluate our approach using a numerical solution
to a real world example called reverse time migration (RTM)
[16], our approach is more broadly applicable to all forms of
time-stepped stencil based codes.

Our key idea is to use machine learning techniques to train
a cost-effective regression model that predicts the output of the
target stencil’s kernel given its input. The model will be trained
on values observed in real stencil executions and will declare
an error when its predictions significantly disagree with the
value computed by the stencil. Our specific contributions are:

• A novel approach that uses regression techniques to
compute an efficient approximation of the computational
kernels used in a given stencil,

• A systematic way to reduce the size of a training data
used for generating a regression model,

• Application of cross validation to estimate the sample size
and for feature selection for building efficient detectors;
and

• A new open-source soft-error detection library SORREL
that helps evaluate/extend our technique. It could be
compiled as a static library or as a dynamically linked
shared object library. A detailed usage documentation has
been made available with the public release of SORREL
[17].

II. RELATED WORK

Recently, there has been a considerable interest in develop-
ing efficient error detectors for time-stepping applications. The
work by Benson et. al. [18] proposes running a cost-effective
but unstable solver alongside the main solver and declaring an
error when the results of these solvers disagree beyond a given
threshold. Our approach is very similar to this work but derives
the secondary solver automatically rather than selecting and
implementing it manually for each main solver.

Another recent work by Berrocal et. al. [19] uses regression
functions to detect run-time anomalies caused due to soft
errors. They use execution data to learn these regression
functions at run-time. The key differences between our and
their approach are following:

• We train the approximate function in a separate phase.
This allows us to use more data to produce a more accu-
rate model but also places constraints on our technique.

• Whereas Berrocal et. al. train functions that specifically
detect anomalies, SORREL computes functions that ap-

proximate the original computation. This makes them
useful for additional purposes, such as optimization via
approximate computing, and code understanding for de-
velopers.

Several other promising directions have been pursued to-
wards building soft error detectors. While hardware and
architectural-level protection [15], [20], [21] serves as a first
line of defense, they must be complemented with more flexible
software-level techniques. Several software-level techniques
employ control-flow based detectors [22], [23], which rely on
detecting illegal control transitions. These detectors are more
suitable for control-flow rich applications, and less effective
for data-intensive applications. Finally, Algorithm Based Fault
Tolerance (ABFT) exploits algorithmic properties of a program
to detect errors [24]–[26] but these solutions are problem-
specific.

III. AN OVERVIEW

Our approach works with arbitrary stencils; in this paper it
is evaluated on a specific important method, the reverse time
migration (RTM) [16] algorithm, as implemented by McCool
et al [27]. This example RTM stencil kernel shown in eq. 1
uses a finite-difference approximation of the PDE described in
eq. 2. This scheme is second-order accurate in time and eighth-
order accurate in space [27]. Here, P is a three-dimensional
array and Pn(x, y, z) denotes the value of the pressure wave at
coordinates (x, y, z) at time n, and v is the velocity of pressure
wave which is constant for a given medium. As shown in
figure 1, to calculate Pn+1(x, y, z) the RTM stencil kernel
uses the values of 25-point RTM stencil from the previous
time-step.

Pn+1(x, y, z) = 2 ∗ Pn(x, y, z)− Pn−1(x, y, z) + v2
{
C0

∗ Pn(x, y, z) +

k=4∑
k=1

{
Ck ∗ (Pn(x+ k, y, z)

+ Pn(x− k, y, z) + Pn(x, y + k, z)
+ Pn(x, y − k, z) + Pn(x, y, z + k)

+ Pn(x, y, z − k))
}}

(1)

Our goal is to train a regression model that predicts the
output Pn+1(x, y, z) of a stencil evaluation given one or
more of its inputs. The choice of which inputs to use for
model training affects its accuracy and cost. Table I lists the
choices we evaluate in this study. The output and the selected
inputs for a given stencil evaluation form a feature vector
and the regression model is trained in a set of such vectors
collected over multiple application runs with different inputs.
The resulting regression model computes an approximation of
the RTM stencil kernel, and is used to verify that whether the
output of the original kernel is likely to be correct.

∂2P

∂n2
= v2

(
∂2P

∂x2
+
∂2P

∂y2
+
∂2P

∂z2

)
(2)

When selecting the features on which to train the regression
model our goal is to use as few inputs of the RTM stencil

Fig. 1: 25-point RTM stencil

as possible while accurately approximating its output. Feature
vectors f1, f4, f5, f6 include different subsets of the stencil’s
inputs, while vectors f2 and f3 include the stencil’s output
in the preceding time-step. In contrast, vector f7 uses all 25
points in the RTM stencil and serves as an upper bound on
the accuracy of a regression model. Our hypothesis, which
is evaluated in the following sections, is that including more
input data will produce a model that is more accurate but more
expensive.

Feature Vector Feature List Comments
f1 Pn(x, y, z)
f2 Pn−1(x, y, z)
f3 Pn(x, y, z),Pn−1(x, y, z)

f4

Pn(x, y, z),
Pn(x+ 1, y, z),Pn(x− 1, y, z),
Pn(x, y + 1, z), Pn(x, y − 1, z),
Pn(x, y, z + 1),Pn(x, y, z − 1)

f5

Pn(x, y, z),
Pn(x+ s1, y, z),Pn(x− s1, y, z),
Pn(x, y + s1, z),Pn(x, y − s1, z),
Pn(x, y, z + s1),Pn(x, y, z − s1) 1 ≤ s1 ≤ 2

f6

Pn(x, y, z),
Pn(x+ s2, y, z),Pn(x− s2, y, z),
Pn(x, y + s2, z),Pn(x, y − s2, z),
Pn(x, y, z + s2),Pn(x, y, z − s2) 1 ≤ s2 ≤ 3

f7

Pn(x, y, z),
Pn(x+ s3, y, z),Pn(x− s3, y, z),
Pn(x, y + s3, z),Pn(x, y − s3, z),
Pn(x, y, z + s3),Pn(x, y, z − s3) 1 ≤ s3 ≤ 4

TABLE I: Feature Vectors based on 25-Point RTM Stencil

IV. APPROXIMATE FUNCTION GENERATION

The first step in training a regression model is to collect
the data on which it will be trained. We generate the train-
ing dataset by running the RTM application on randomly-
generated inputs. The inputs are randomly-generated by vary-
ing fields such as array size, number of time-steps, the value
chosen to initialize Pn(x, y, z) at time n = 0, and the point of
origin for the pressure wave denoted as a point in Pn(x, y, z)
at time n = 0. During an execution of the stencil program,
each point in time and space produces a unique observation.
During training phase, these observations are used to generate
training data.

Fig. 2: Sampler workflow during training phase

A. Sampling Technique

Given the very large number of observations generated in
the training phase, it is crucial that we perform sampling to
reduce the training data size. As such, we employ stratified
sampling [28] to collect a representative subset of all the
collected data that captures the breadth of the full dataset but
is tractable to train on. To sample we divide the time-stepped
computational data into a finite number of (preferably equal
sized) strata. We then perform a simple random sampling on
the computational data belonging to each stratum having a
sample size expressed in eq. 3.

Sm = k ∗ Pm (3)

Here, Sm is the sample size for a stratum with index m,
and Pm is the corresponding population size. The population
size Pm is the size of the complete computational data which
belongs to the stratum at index m. The constant value k is the
fraction of the total population size that is sampled.

B. Sample Size Estimation

To determine the number of samples necessary to compute
an accurate model, we use a cross-validation driven approach
[29] that is illustrated in figure 2. A target program is executed
under a set of randomly-generated training inputs. Using an
initial guess value for k, the raw computational data is sampled
to produce an optimized training dataset. We perform n-
fold cross-validation [30] on the training dataset by training
LibSVM [31] on the training subsets and evaluating it on
the test subsets to quantify accuracy. We iterate this process
with the larger values of k until the respective cross-validation
accuracy stabilizes. The smallest possible value of k that
provides reasonable cross-validation accuracy is chosen for
generating the regression model.

C. Regression Analysis

In order to generate approximate functions, we perform
linear regression [32] using each feature vector listed in
table I. Specifically, we use a linear regression kernel epsilon-
SVR [33]–[35] implemented in LibSVM software [31]. The

generated regression models are then used by SORREL to
compute their corresponding approximate functions.

V. DETECTOR SYNTHESIS

In eq. 4, Kn(x, y, z) represents a stencil kernel that com-
putes Pn(x, y, z), and An

fr
(x, y, z) is an approximation for

Kn(x, y, z), generated through regression analysis using a
feature vector fr as described in section IV. As shown in
eq. 4, Dn

fr
(x, y, z) is a boolean detector function. It returns

true if the absolute difference between the observed and the
predicted value for a given stencil computation, represented as
|Kn(x, y, z)−An

fr
(x, y, z)| exceeds a threshold value τ .

Dn
fr (x, y, z) =

{
true, if |Kn(x, y, z)−An

fr
(x, y, z)| > τ.

false, otherwise.
(4)

Table II quantifies the additional number of operations per-
formed by the detectors as compared to the native version
of the RTM stencil kernel shown in eq. 1. The detectors
Df1 through Df7 are synthesized using feature vectors f1
through f7 respectively as listed in table I. As shown later
in section VI-D, the higher cost of detectors Df4 through Df7

relates directly to the larger numbers of RTM stencil points
they use as input.

A. Threshold Estimation & Detector Accuracy

We now explain the method to determine an optimal or
near-optimal value of the threshold (hereafter denoted as τopt)
which yields a high error detection rate (true-positives) with
few false-positives. To quantify the impact of τ on these two
metrics we plot receiver operator characteristic (ROC) curve
[36] for the detectors synthesized using feature vectors listed
in table I. This curve shows the true-positive and false-positive
rates achievable by each detector across a range of values for τ .
For a given number of observations, the true-positive rate Rtp

is calculated using number of observations with true-positives
(Ntp) and false-negatives (Nfn) as shown in eq. 5.

Rtp =
Ntp

Ntp +Nfn
(5)

The false-positive rate Rfp is calculated using number of
observations with false-positives (Nfp) and true-negatives
(Ntn) as shown in eq. 6.

Rfp =
Nfp

Nfp +Ntn
(6)

In the current context, an observation represents an instance
of a program execution during which a soft-error may or may-
not occur. If a soft-error is witnessed during an observation
and the soft-error is successfully flagged by a detector then the
observation is regarded as a true-positive instance. However,
if the detector fails to catch the soft-error then the observation
is a false-negative instance. Conversely, during an error-free
observation, if a detector falsely reports the detection of a soft-
error then we treat this observation as a false-positive instance.

If the detector does not flag any error during an error-free
observation then we call it a true-negative instance.

A ROC curve is obtained by plotting Rfp and Rtp against
each other using x and y axes respectively across a range values
for τ . We select the point on the ROC curve that gives a high
value for Rtp and a low value for Rfp. Note that the acceptable
values for Rtp and Rfp depend on the magnitude of errors a
given application can tolerate, with some applications being
inherently resilient to errors of low magnitude [26], [37].

Operation
Type

Operation Count1

Native
Computation Df1 Df2 Df3 Df4 Df5 Df6 Df7

{∗} 19 1 1 2 7 13 19 25
{+} 25 0 0 1 6 12 18 24
{−} 1 1 1 1 1 1 1 1
{>} 0 1 1 1 1 1 1 1
{! =} 0 1 1 1 1 1 1 1
Total 45 4 4 6 16 28 40 52

TABLE II: A comparison of operation count

VI. EXPERIMENTAL RESULTS

We generate our error detectors in two phases. During
the initial training phase we generate the approximate stencil
function. During the test phase we select τopt using ROC curve
analysis and evaluate the detector’s effectiveness.

A. Training Phase

We generate 1000 unique program inputs for the RTM
program using SORREL. We use 1% of these inputs in the
training phase and the rest are used during the testing phase.
Each of these training inputs leads to a huge amount of
training data underlining the need for sampling as explained
in section IV. The next step is to quantify the distribution
of errors made by each model relative to the real values
computed by the RTM stencil. To this end we used n-fold
cross-validation, where the set of observations (sampled using
stratified sampling as explained in section IV-B) is divided
into n non-overlapping sub-sets. For each sub-set i, we train
a model using the remaining n− 1 sub-sets and compute the
error of the model using sub-set i as the test data. Finally, the
overall-error (hereafter referred as et) is computed by applying
the mean-squared-error (MSE) metric on the individual model
errors obtained using each of the n sub-sets. Figures 3 and 4
show the distribution of instances of et obtained using 10
different observation samples, when using either n = 2 or
n = 10 and k = 4e − 5. The data shows that the instances
of et are distributed according to a skew normal distribution,
where all values lie within 3 standard deviations of the mean
(µ ± 3σ). This distribution has the same shape regardless of
the number of folds (n) and other values of k also produce
errors with similar distributions.

Having observed a skew normal distribution for the in-
stances of et, we now represent the accuracy of the corre-
sponding regression model as an average of the individual

1Operation count mentioned for the detectors are in addition to the number
of operations required by the native computation.

values of et in the distribution (hereafter referred as ea). Next,
we determine the appropriate value of k, which controls how
sparsely the training data is sampled. Figures 5 and 6 show
the different values of ea calculated for the regression models
based on feature vectors f1 through f7 with values of k ranging
from 1e−6 to 1e−4. As k increases (i.e. more observations are
used to train the model) the regression model’s accuracy (ea)
improves until k reaches 4e−5, after which point it stabilizes.
We thus use k = 4e− 5 for training our models.

Another important point to note that in our experiments,
we fix the stratum size to 60 while performing stratified
sampling, which means each stratum represents data from
60 consecutive time-steps of the RTM program. We fix the
stratum size in order to limit the volume of our experiments.
In general, it is expected that smaller the size of the stratum,
the finer will be the representation of the individual time-steps
leading to a better cross validation accuracy. In future, we plan
to further augment our current experimental strategy (which
already includes extensive set of experiments to determine
sample size) to also determine the optimal stratum size.

B. Error Model

We consider an error model involving a soft-error occurring
in a CPU operation or register. Further, we only consider a
subset of the soft-errors which cause SDC in the program
output. Therefore, we do not consider all possible program
locations in the RTM program for error injections but rather
only inject single-bit errors into a single randomly-selected
location in an array used by the stencil. The time-step during
which the error is injected is also chosen at random. The
error is injected in a value after it is loaded from a memory
location into a CPU register and before it is stored back to the
memory after a computation. This approach helps us to focus
on our primary goal of studying the efficacy of our detectors
in detecting SDC causing soft-errors.

C. Threshold Selection

To determine τopt, we plot the ROC-curve using the values
of true-positive rate (Rtp) and false-positive rate (Rfp) com-
puted by running two independent experiments. In the first
experiment, we run the RTM program under each test input
and a soft-error is injected during each run. We obtain the
values for Ntp and Nfn from this experiment and use these
values to compute Rtp using eq. 5. In the second experiment,
we repeat all the steps followed in the first experiment without
injecting any error. Using the result of the second experiment,
we obtain Nfp and Ntn and use them to compute Rfp

following eq. 6. We repeat these experiments for different
threshold values for each of the detectors synthesized using
feature vectors listed in table I.

The threshold value chosen for our experiments starts with
a very small value, and is gradually increased until we achieve
reasonable true-positive and false-positive rates. Figure 7
shows that a very high value of the true-positive and the false-
positive rates are observed (top-right area) for a low threshold

Fig. 3: Distribution of et for 2-fold Cross Validation Fig. 4: Distribution of et for 10-fold Cross Validation

Fig. 5: Sample size estimation using 2-fold Cross Validation Fig. 6: Sample size estimation using 10-fold Cross Validation

Fig. 7: ROC curve for the detectors Fig. 8: Error detection rate and overhead data with τopt = 30

value of 5. As the threshold value is increased in a fixed step-
size of 5, the true-positive rate decreases at a much slower rate
as compared to the false-positive rate, which demonstrates the
effectiveness of the detectors. For a threshold value of 30, the
false-positive rate shrinks to zero, while still providing a true
positive rate of > 85% for all the detectors.

D. Error Detection Rate & Overhead Data

Figure 8 presents the true-positive error detection rate and
overhead of each detector. With a threshold value of τopt =
30, a high error-detection rate (> 85%) is observed for all

the detectors. Detectors which use features f1, f2, f3 and f4
observe an average overhead of approximately 33%, whereas
detectors with higher feature counts have an average overhead
between 54% to 94%. This suggests that the former are the
best choice for making applications resilient to errors. Further
that fact that the addition of features between f1 and f4 has no
effect on overhead suggests that their primary cost may not be
the computations they perform, but rather other effects such as
interference with the main computation’s use of the memory
hierarchy. We will examine these performance properties in
more detail in future work.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach using linear
regression to efficiently approximate stencil kernels, validating
it on the RTM stencil. We showed how the cost of training
the model can be reduced via cross-validation driven stratified
sampling to systematically reduce the training set size. We also
showed how to find a near-optimal threshold value(τopt) for
the detectors using ROC curve analysis and presented the error
detection rate and the overhead data for the detectors. A high
error detection rate reported by our detectors demonstrates
the effectiveness of our approach. As a part of our future
work, we’ll analyze the error detection rate of our detectors
against a subset of SDC-causing soft-errors which affect the
convergence and stability of the solvers. Finally, in future, we
plan to evaluate our approach on other ODE and PDE solvers
based on explicit finite-difference method, such as problems
related to computational fluid dynamics and electromagnetism.

VIII. ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers
for their feedback and comments.

REFERENCES

[1] D. F. Heidel, K. P. Rodbell, E. H. Cannon, C. Cabral, M. S. Gordon,
P. Oldiges, and H. H. Tang, “Alpha-particle-induced upsets in advanced
cmos circuits and technology,” IBM Journal of Research and Develop-
ment, vol. 52, no. 3, pp. 225–232, 2008.

[2] P. N. Sanda, J. W. Kellington, P. Kudva, R. N. Kalla, R. B. McBeth,
J. Ackaret, R. Lockwood, J. Schumann, and C. R. Jones, “Soft-error
resilience of the IBM POWER6 processor,” IBM Journal of Research
and Development, vol. 52, no. 3, pp. 275–284, 2008.

[3] S. Borkar, “Design Challenges of Technology Scaling,” in IEEE Micro,
vol. 19, no. 4, pp. 23–29, 1999.

[4] S. Borkar, “Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation,” in IEEE Micro,
vol. 25, no. 6, pp. 10–16, 2005.

[5] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer:
Exploiting application-level fault equivalence to analyze application re-
siliency to transient faults,” in International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2012.

[6] V. C. Sharma, A. Haran, Z. Rakamaric, and G. Gopalakrishnan,
“Towards Formal Approaches to System Resilience,” in Pacific Rim
International Symposium on Dependable Computing (PRDC), 2013.

[7] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien,
P. Coteus, N. A. DeBardeleben, P. C. Diniz, C. Engelmann, M. Erez,
S. Fazzari, A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy, S. Leyf-
fer, D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley, and E. V.
Hensbergen, “Addressing failures in exascale computing,” International
Journal of High Performance Computing Applications, vol. 28, no. 2,
pp. 129–173, 2014.

[8] S. E. Michalak, W. N. Rust, J. T. Daly, A. J. DuBois, and D. H. DuBois,
“Correctness field testing of production and decommissioned high
performance computing platforms at los alamos national laboratory,” in
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2014.

[9] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir, “To-
ward Exascale Resilience,” International Journal of High Performance
Computing Applications, vol. 23, no. 4, pp. 374–388, 2009.

[10] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience: 2014 update,” Supercomputing frontiers
and innovations, vol. 1, no. 1, pp. 5–28, 2014.

[11] M. Agarwal, B. Paul, M. Zhang, and S. Mitra, “Circuit failure prediction
and its application to transistor aging,” pp. 277–286, 2007.

[12] C. Chen and M. Hsiao, “Error-correcting codes for semiconductor mem-
ory applications: A state-of-the-art review,” IBM Journal of Research
and Development, vol. 28, no. 2, pp. 124–134, 1984.

[13] T. J. Dell, “A white paper on the benefits of chipkill-correct ecc for pc
server main memory,” IBM Microelectronics Division, pp. 1–23, 1997.

[14] C. Slayman, “Cache and memory error detection, correction, and
reduction techniques for terrestrial servers and workstations,” IEEE
Transactions on Device and Materials Reliability, vol. 5, no. 3, pp.
397–404, 2005.

[15] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim, “Robust system
design with built-in soft-error resilience,” Computer, vol. 38, no. 2, pp.
43–52, 2005.

[16] E. Baysal, D. D. Kosloff, and J. W. Sherwood, “Reverse time migration,”
Geophysics, vol. 48, no. 11, pp. 1514–1524, 1983.

[17] “SORREL: A Soft-Error Detection Framework,” http://www.cs.utah.edu/
formal verification/fmr/#sorrel.

[18] A. R. Benson, S. Schmit, and R. Schreiber, “Silent error detection
in numerical time-stepping schemes,” International Journal of High
Performance Computing Applications, 2014.

[19] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello,
“Lightweight silent data corruption detection based on runtime data
analysis for hpc applications,” 2014.

[20] P. Meaney, S. Swaney, P. Sanda, and L. Spainhower, “IBM z990
soft error detection and recovery,” IEEE Transactions on Device and
Materials Reliability, vol. 5, no. 3, pp. 419–427, 2005.

[21] N. Wang and S. Patel, “Restore: symptom based soft error detection in
microprocessors,” in International Conference on Dependable Systems
and Networks (DSN), 2005.

[22] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow checking
by software signatures,” IEEE Transactions on Reliability, vol. 51, pp.
111–122, 2002.

[23] R. Venkatasubramanian, J. Hayes, and B. Murray, “Low-cost on-line
fault detection using control flow assertions,” in On-Line Testing Sym-
posium (IOLTS), 2003.

[24] C. Ding, C. Karlsson, H. Liu, T. Davies, and Z. Chen, “Matrix multipli-
cation on gpus with on-line fault tolerance,” in International Symposium
on Parallel and Distributed Processing with Applications (ISPA), 2011.

[25] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra, “Algorithm-
based Fault Tolerance for Dense Matrix Factorizations,” in Symposium
on Principles and Practice of Parallel Programming (PPoPP), 2012.

[26] J. Sloan, R. Kumar, and G. Bronevetsky, “An algorithmic approach
to error localization and partial recomputation for low-overhead fault
tolerance,” in International Conference on Dependable Systems and
Networks (DSN), 2013.

[27] M. McCool, A. D. Robison, and J. Reinders, “Chapter 10: Forward
Seismic Simulation,” in Structured Parallel Programming: Patterns for
Efficient Computation, 1st ed., 2012, pp. 265–277.

[28] J. Neyman, “On the two different aspects of the representative method:
The method of stratified sampling and the method of purposive selec-
tion,” Journal of the Royal Statistical Society, vol. 97, no. 4, pp. 558–
625, 1934.

[29] C. N. Park and A. L. Dudycha, “A cross-validation approach to sample
size determination for regression models,” Journal of the American
Statistical Association, vol. 69, no. 345, pp. 214–218, 1974.

[30] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in International Joint Conference on
Artificial Intelligence (IJCAI), 1995.

[31] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 1–27, 2011, software available at http://www.csie.ntu.edu.tw/
∼cjlin/libsvm.

[32] L. S. Aiken, S. G. West, and S. C. Pitts, Multiple Linear Regression.
John Wiley & Sons, Inc., 2003.

[33] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, 1995.

[34] V. N. Vapnik, “The nature of statistical learning theory,” 1995.
[35] V. Vapnik, “An overview of statistical learning theory,” IEEE Transac-

tions on Neural Networks, vol. 10, no. 5, pp. 988–999, 1999.
[36] A. P. Bradley, “The use of the area under the ROC curve in the evaluation

of machine learning algorithms,” Pattern Recognition, vol. 30, no. 7, pp.
1145–1159, 1997.

[37] A. Thomas and K. Pattabiraman, “Error detector placement for soft
computation,” in International Conference on Dependable Systems and
Networks (DSN), 2013.

Detecting Soft Errors in Stencil based Computations

1. Motivation

4. ROC Curve Analysis 5. Experimental Result

3. Sample Size Estimation

• Protect stencil computations against soft errors

• Stencil based computations have high arithmetic intensity

• Target PDE solvers using stencil based computations

• Main memory and data cache often protected using ECC

• Focus on soft errors affecting CPU registers and its ALU

• Key idea is to use a variant of software level DMR

• Use approximate function for redundant computing

• Approximate function derived using machine learning

• A high error detection rate between 85%-90% is witnessed

• An overhead around 32%-33% for detectors based on f1-f4

• Detectors based on feature vectors f1-f4 are the feasible ones

6. Conclusions & Future Work

7. Acknowledgements

• Supported in part by NSF Award CCF 1255776 and SRC

contract 2013-TJ-2426

8. Closely Related References

2. Proposed Error Detection Scheme

Vishal Chandra Sharma, Ganesh Gopalakrishnan

School of Computing, University of Utah

Greg Bronevetsky

Lawrence Livermore National Laboratory

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.0 0.1 0.2 0.3 0.4

T
ru

e
 P

o
s

it
iv

e
 R

a
te

 (
T

P
R

)

False Positive Rate (FPR)

Feature Vector f1 Feature Vector f2 Feature Vector f3

Feature Vector f4 Feature Vector f5 Feature Vector f6

Feature Vector f7

time step t time step t+1

Soft Error

Soft-error Propagation in 25-point RTM Stencil

85.4% 86.6% 85.2%
88.6% 87.0%

90.2%
86.2%

32.4% 32.1% 33.7% 32.5%

54.1%

72.9%

94.4%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

f1 f2 f3 f4 f5 f6 f7

Feature Vectors

Error Detection Rate Performance Overhead

1
.4

3
E

-0
3

1
.1

1
E

-0
3

9
.3

1
E

-0
4

8
.5

7
E

-0
4

6
.8

1
E

-0
4

5
.1

5
E

-0
4

5
.9

6
E

-0
4

k=1.00E-0.06 k=4.00E-0.06 k=7.00E-0.06 k=1.00E-0.05

k=4.00E-0.05 k=7.00E-0.05 k=1.00E-0.04

C
ro

s
s
 V

a
li
d

a
ti

o
n

A
c
c
u

ra
c
y

[1]C. N. Park and A. L. Dudycha, “A cross-validation approach to sample

size determination for regression models,” Journal of the ASA, vol. 69, no.

345, pp. 214–218, 1974.

[2]E. Baysal, D. D. Kosloff, and J. W. Sherwood, “Reverse time migration,”

Geophysics, vol. 48, no. 11, pp. 1514–1524, 1983.

[3]C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector

machines,” in ACM Transaction on IST, vol. 2, pp. 1–27, 2011, software

available at http://www.csie.ntu.edu.tw/cjlin/libsvm.

[4] A. R. Benson, S. Schmit, and R. Schreiber, “Silent error detection

in numerical time-stepping schemes,” International Journal in HPCA, 2014.

[5] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello,

“Lightweight silent data corruption detection based on runtime data

analysis for hpc applications,” 2014.

[6] J. Neyman, “On the two different aspects of the representative method:

The method of stratified sampling and the method of purposive selection,”

In Journal of the RSS, vol. 97, no. 4, pp. 558–625, 1934.

• Derive an approximate function for a stencil kernel

• Use SVM based regression analysis for this purpose [3]

• Use stratified sampling to reduce training data size [6]

• Approximate function requires fewer arithmetic operations

• Detector synthesis uses a software level DMR scheme

• Approximate function used for the redundant computation

• Perform ROC analysis for near optimal threshold estimation

• Estimated threshold should minimize false positive cases

Stencil

Kernel

Approximate

Function

> τ Error

Detected

Yes

• A recent work uses regression analysis to detect runtime

anomalies [5]

• Another work uses secondary lesser accurate solver [4]

• Our approach relies on deriving and using approximate

functions for detector synthesis

• An efficient approximation of RTM stencil using linear

regression

• A cross validation driven stratified sampling approach

to systematically reduce training data size

• A near optimal threshold estimation through ROC curve

analysis

• In future, consider other applications which use finite

difference explicit methods

